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mPD, mPCLP and mDCLP surfaces) have been 
determined. 

For IPMS in the regular class the explicit calcula- 
tion of surface coordinates, via numerical integration 
of the Weierstrass representation, is readily per- 
formed. As each of the s branches of the Weierstrass 
function only differs by a constant factor exp (i~p), 
the traversal of the Riemann surface induced in such 
a calculation is easily traced. Numerical generation 
of the Fliichenstiick is extremely useful in visualizing 
the lower-symmetry examples in which the plane lines 
of curvature and/or linear asymptotes do not define 
a boundary circuit. Even in higher-symmetry cases 
the computation is worthwhile since the inter- 
penetrating labyrinth networks partitioned by the 
IPMS are not always immediately apparent. 

The technique we have used also leads naturally 
to nonclassical minimal surfaces that are orienta- 
tionally ordered but lack translational symmetry. 
Whether these surfaces are physically relevant 
remains to be seen. However, the recent interest in 
quasicrystalline structures and orientational order 
warrants there inclusion here. We have looked for 
surfaces whose point-group symmetries are those of 
the icosahedron, since these are allowed symmetries 
on the sphere, however, no such minimal surface 
exists within the regular class. (Note that such an 
icosahedrai surface does exist as an irregular surface, 
of higher genus.) However, special positions on one 
of these new noncrystallographic surfaces, the pen- 
tagonal CLP surface, exhibits the same point-group 
symmetry as that of the so-called T-phases in rapidly 
quenched alloys (Bendersky, 1985). This symmetry 
has also been observed in a lyotropic liquid crystal 
(Fontell, 1991). 

Having concluded our study of the regular class of 
IPMS, the question of possible extension of the con- 
struction algorithm to all IPMS arises. The recogni- 

tion of this special class is a somewhat arbitrary one, 
introduced for the sake of simplicity of the Riemann- 
surface structure of the Weierstrass function, thus 
facilitating an exhaustive listing of all such possible 
surfaces. This listing serves a dual purpose - firstly, 
in unifying all previously discovered IPMS (e.g. D, 
P and CLP surfaces) within a systematic parametriz- 
ation scheme that permits generalization to reduced- 
symmetry families and isolating new IPMS such as 
the VAL surface illustrated in Fig. 17(b) and (c) and, 
secondly, in the converse statement that there exists 
no other IPMS in this class. However, the limitations 
of this class are clear, both from the existence of 
'irregular' IPMS, such as the Neovius [or C(P)] sur- 
face, and from the existence of 'regular' IPMS, such 
as the I-WP surface, which pass into the irregular 
class on crystallographic distortion. The construction 
framework of topological, geometrical and Riemann 
surface features established here permits a natural 
generalization of the above to the irregular class. This 
is addressed in a forthcoming study (Fogden, 1992). 
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Abstract 

The symmetry of reciprocity is reviewed in the context 
of relativistic quantum mechanics with the specific 
aim of relating to C, P and T invariances. From this 
investigation global time reversal is found to be a 

sufficient condition for reciprocity to hold in scatter- 
ing from a vector potential. The present proof is free 
from assumptions of small-angle scattering and from 
restrictions on z-dependent terms in the scattering 
equation, and by avoiding S-matrix theory is thought 
to be accessible to undergraduate teaching. 
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1. Introduction 

The theorem of reciprocity has found everyday appli- 
cation in electron diffraction. Initially, through the 
work of yon Laue (1935) and Cowley (1969), and 
later Moodie (1972) and Buxton, Eades, Steeds & 
Rackham (1976), this theorem has become a basic 
element in electron diffraction analysis and analysis 
of z symmetries in electron-microscope contrast. 
However, little progress has been made in relating 
these symmetries directly to those of relativistic 
quantum mechanics. Standard derivations of the 
reciprocity relation using time-reversal (TR) sym- 
metry and the S-matrix formalism (see, for example, 
Merzbacher, 1961) are dependent upon the invariance 
of a Hermitian Hamiltonian under TR. This leaves 
something to be desired in terms of the specifics 
of the time-stationary N-beam solution; see, for 
example, Portier & Gratias (1982). 

On the other hand, Pogany & Turner (1968) gave 
a proof that relied only on the symmetry of a Green's 
function involved in the solution of the non-rela- 
tivistic Schr6dinger equation following an earlier 
proof by Bilhorn, Foldy, Thaler & Tobocam (1964). 
In this present note we aim to extend their method 
to the Klein-Gordon equation and to the presence 
of a vector potential. This latter consideration is inter- 
esting because of the experimental observation by 
Tonomura, Matsuda & Endo (1986) of the breakdown 
of reciprocity for a magnetic specimen (the actual 
purpose of these authors was to exploit this break- 
down in separating electrostatic and magnetic phase 
changes, but in so doing their results gave an experi- 
mental verification). 

Elastic scattering is assumed in the present paper, 
which deals exclusively with the scattering of a 
charged particle by an electromagnetic field. 
However, derivations for electromagnetic radiation 
and a dielectric field, and for a charged particle under- 
going specific inelastic processes, will be considered 
in the near future. 

2. Derivation 

Models 

Electron diffraction can be modelled by an electron 
plane wave scattering off some object in which the 
four-potential A ~ = ( ~ , A )  is nonzero within the 
volume J~ occupied by the scatter. The source of 
particles (an electron gun) is denoted by the point P 
and the detector (a plate) by the point Q. 

For small accelerating potentials, the electrons 
are nonrelativistic and may be treated with the 
Schr~Sdinger equation but, for large accelerating 
potentials, the Dirac equation should be used. Since 
the effect of the electron spin is usually negligible in 
both cases, the Klein-Gordon equation may be used 
in the relativistic case. 

Reciprocity 

If qZp(r)  denotes the scattered wave function at r 
with the source at P, then this notation can be used 
to define the notion of reciprocity: 

I ~'o(rp)l = I ~ ( r o ) l .  (1) 
What this amounts to is an interchange of source 

and detector or, in the particular case of elastic scat- 
tering, a rotation of 180 ° of the scatterer about the 
direction defined by the direction of the change-in- 
momentum vector zip = P l - P ~ ,  where p~ and P.r are 
the incident and scattered electron momenta respec- 
tively (see Fig. 1). Although the following discussion 
is confined to spherical waves, these directions are 
still well defined when the source-scatterer and detec- 
tor-scatterer distances are large compared with the 
dimensions of the scatterer. 

We seek to find under which conditions (i.e. the 
constraints on the potentials ~, A) an experiment can 
be said to be subject to the reciprocity condition (1). 
This amounts to finding the constraints on ¢ and A 
that guarantee an identical beam intensity at the point 
Q on the plate when the scatterer is rotated as 
described above. The relationship of this symmetry 
to other fundamental quantum-mechanical sym- 
metries (C, P and T) will be discussed. 

Motivation from classical results 

The relativistic but classical (i.e. non-quantum- 
mechanical) path of the electron can be computed 
uniquely from the Lagrangian 

L¢(u, A, ~o, e) = -i,~c2(1 - u 2 / c 2 )  1/2"4- (e/ c)u. A -  ecp, 

where the potentials are in general non-parity- 
invariant (i.e. unsymmetric). Table 1 shows the effect 
of the fundamental transformations C, P and T on 
the potentials A ~, the charge e and the velocity 
(momentum) u(p). This assumes a global transforma- 
tion - as if the experimenter were able to change the 
fields inside the sample as well as the direction of the 
electron beam. 

X2 

p~ 

P( 
-D 

Fig. 1. Schematic diagram showing the equivalence of a 180 ° 
rotation of  the scatterer about Ap to the reciprocity 
symmetry. 
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Table 1. Global C, P and T transformations 

T r a n s f o r m a t i o n  A ' ( r ' )  q~'(r') u ' ,  p '  e '  L" 

C - A ( r )  -~otr) u, p - e  L, 
P A ( - r )  q~(-r) - u ,  - p  e ? 
T - A ( r )  ~,(r) - u ,  - p  e L, 

CT A(r) -q~(r) - u .  - p  - e  L. 

Table 2. Restricted C, P and  T transformations 

T r a n s f o r m a t i o n  A ' ( r ' )  ~ ' ( r ' )  u' ,  p '  e '  L~. 

C A(r) ~o(r) u, p - e  ? 
P A(r) ~(r) - u ,  - p  e ? 
T A(r) q~(r) - u ,  - p  e ? 

CT A(r) ~o(r) - u ,  - p  - e  ? 

The entries in Table 1 imply that the electron path 
is classically reversible (and therefore reciprocal) 
under any combination of C or T global transforma- 
tions. This is also clear by inspection of the Lorentz 
force 

F =  e ( E + v x  B) = e ( - V ~ o + v x V  xA) ,  

where conservation of the force F under reversal of 
the velocity v requires conservation of the sign of e~o 
and a flip in the sign of eA. More realistically, 
however, the experimenter will only be able to change 
the direction and charge of the particles being fired 
at the specimen and not the internal fields: see Table 
2. Thus the Lagrangian is noninvariant and the 
experimenter cannot expect to see a reciprocal system. 
In the special case of a negligible magnetic field 
(which turns out to be relevant to a very wide class 
of materials), the system is reciprocal under "restric- 
ted' time reversal, which corresponds to the 180 ° 
rotation described above. The condition for this is 

u ~ electric field 

c A magnetic field" 

Reciprocity theorems in quan tum mechanics 

Nonrelativist ic case. The proof of reciprocity for 
the nonrelativistic case follows closely that of Bilhorn 
et al. (1964), but we incorporate the magnetic field 
to obtain greater generality. Natural units (h = c = 1 ) 
are used throughout. We assume the scatterer and 
electron system can be described by a Hamiltonian 
of form 

H = ( 1 / 2 ~ ) ( p -  eA)  2 + o¢ (r), 

where no spin interactions have been incorporated. 
We claim that the equation 

( H -  ia,)qtp(r,  t) = 6 ( r - r p )  exp ( - i E t ) ,  

which can be written in the separated form (providing 
the potentials are time-independent) 

(H - E) g'p(r, t) = 6 ( r - r p ) ,  

Up(r, t) = ~t,(r)  exp ( - i E t ) ,  

corresponds to a source at point P (an electron gun) 
of electrons of energy E that are in stationary states. 
This,is justified by the fact that the ' incident '  wave 
function on the volume .O will have the asymptotic 
form 

q S p ( r , t ) - I r - r p I  -I e x p { i [ k . ( r - r p ) - E t ] } ,  (2) 

which looks exactly like the plane wave assumed in 
conventional scattering theory when ] r - r p  I is large 
compared to the dimensions of the scatterer (i.e. 
I t -  rpl will be virtually constant over the range of the 
interaction). This is manifestly true in, say, an electron 
microscope, where ] r - rp]  will be the gun-specimen 
distance. 

A point source at A of electrons of energy E will 
then be described by the equation 

[( 1/2/x ) ( - i V -  eA) 2 + eq~ (r) - E ] qtA(r)= ~5(r--rA) 

(3) 

and an identical point source at B will be described 
by 

[( 1/2/x ) ( - i V -  eA) 2 + eq~ ( r ) -  E ] qtB(r) = 6(r-- rB). 

(4) 

If we integrate the result of multiplying equation 
(3) by qtB(r) and subtracting equation (4) multiplied 
by qsA(r) over all space, we obtain 

qtR(rA) -- q/A(rU) 

= (1/2/.~) I [( ~AV2 qSn - qtRV2 qta) 

+ 2ieA • ( ~AV ~B -- ~uV ~A)] d 3r. 

The first term in the integral can be written 

V • ( qsAV qs u - ~t~V qtA)d3r 

---- I ( 1/1"A~7 1//B - -  lP'B~? 1/'tA) " d S .  
a s  

But since the qts satisfy homogeneous boundary con- 
ditions of the form 

c~ q~ + [3 a qs / O n = O 

at the bounding surface OS at infinity (Bilhorn et al., 
1964), this contribution to the integral vanishes and 
the final result is 

a / t B ( r a  ) - -  qra(rl~ ) 

= ( ie / t.~ ) I A . ( kltA V qt,,  - q / B V  tt fa) d3 r ~ O ( 5 )  

in general. 
Now one possible description of a zero magnetic 

field is A = 0 ,  in which case it is obvious that the 
integral in (5) vanishes and the system is reciprocal, 
i.e. ~trn(rA) = qtA(rn). The immediate question is then 
whether this is a gauge-invariant result, i.e. can 
qSU(rA) and a/ta(rB) be made to differ by more than 
a phase factor by the action of gauge transformations. 
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To answer this question it is necessary to recall that 
Green's functions a/~A(r ) and ~Fu(r) are not gauge 
invariant and, under the usual gauge transformations 

A-> A' = A + V x ( r )  
! 

~ ~ ~p = ~o - Ox(r)  / Ot = ~p 

g ' ( r ) ~  ~ ' ( r )  = gZ(r) e x p [ i e x ( r ) ]  

(X ~ R necessarily), 

the new wave function ~A'(r) satisfies the equation 

( H ' - - E ) ~ ' A ( r ) = e x p [ i e x ( r A ) ] ~ 5 ( r - - r A ) ,  (6) 

which amounts simply to a phase shift in the source. 
Such a phase shift is in principle not measurable, 
which suggests that the reciprocity result above is 
gauge invariant. By repeating the above derivation 
starting from (6) we obtain the result 

1Fo(rA) exp [ iex(rA)] - -  ~/~A(rB) exp [ i e x ( ro ) ]  

= (1 /2~)  J [ ( x g ~ V 2 ~  - x/'~V2 grk) 

+ 2 i e A ' .  ( ~ , V  ~ -  ~ V  ~F~)] d 3 r 

= ( i e / t ~ )  ~ ( A + V x )  

x (qZAV ~n -- ~BV ~A) exp ( 2 i ex )  d3r, (7) 

where the first part of the integral vanishes by the 
argument used above. 

If we put A = V s  c in (5) to take into account all 
possible expressions of the magnetic potential corre- 
sponding to zero magnetic field, then clearly a choice 
of gauge transformation )t' = - s  c renders the integral 
in (7) trivially zero, so we may write 

ktrB(rA) e x p [ - - i e ~ ( r A ) ] =  ~A(rR) exp [-iesC(rB)] 

and therefore 

I ~ . ( r ~ ) l  = I ~ 'A(r . ) l ,  

which is the desired reciprocity result. This indicates 
that reciprocity holds at least in the nonrelativistic 
case in the absence of magnetic fields. 

Relat iv i s t ic  case. The proof for the Klein-Gordon 
and Dirac equations follows along similar lines; 
under the same assumptions of t ime-independent 
potentials and stationary-wave functions of energy 
E, the Klein-Gordon equation for a source at point 
A is 

[ ( E - - e ( p ) E - - ( - i V - e A ) 2 - 1 z 2 ] ~ A ( r ) = ~ ( r - - r A ) .  (8) 

Writing the same equation for a source at point B 
and cross-multiplying and integrating as before, we 
obtain 

~B(rA)-- ~A(rO) 

: [ ( ~ , ~ v 2 ~ A  - ~ , ~ v 2 ~ , ~ )  

+ 2 i e A .  ( ~FAV ~B - gtBV ~A)] d3 r. (9) 

The first part of the integral vanishes by the same 
arguments advanced previously and so we have the 
result 

gG(rA) -- grA(r,~) 

= 2 i e J A ' ( ~ A V ~ B - - ~ B V ~ A )  d 3 r # O  (10) 

in general. 
Under the standard gauge transformations above, 

the transformed wave function satisfies 

[( E - e~')2 - ( iV - e A ' ) : -  /z 2] a/tA(r) ' 

= exp [ i ex ( rA)  ] ~5 (r-- rA) ( 11 ) 

and a repetition of the derivation shows that the 
difference integral is 

~B(rA) exp [ iex (rA)  ] - ~A(rB) exp [ iex ( rR)]  

t ~'7 2 1 / ' f  I t 2 
= - ~BV ~,)  

+2 ieA ' .  ( ~ k V ~ F ~ -  ~ V ~ ) ]  d 3r 

= 2 i e ~ ( A + V x ) . ( ~t" 'A V rl" 'o - ~ '~ V ~F 'A ) d 3 r. (12) 

The gauge invariance of the zero-magnetic-field 
reciprocity displayed by (10) is readily proved by 
choosing A = V~: and a gauge transform X = - s  c such 
that the integral in (12) vanishes and thus 

I ~ B ( r A ) - -  ~A(ra). (13) 
The proof for the Dirac equation follows immedi- 

ately upon recollection of the fact that each of the 
components of the Dirac four-spinor ~ (in the usual 
representation) satisfies the Klein-Gordon equation, 
and the homogeneous boundary conditions may be 
written 

0___.~ 
Ad/ + P 3n 

where A and p are some 4 x 4 diagonal matrices whose 
elements will not be independent because of the nor- 
malization of ~. But this implies that each component 
~i of the spinor satisfies the reciprocity relation (13), 
and since the Dirac probability density is 

4 

P(r) = ~(r)*~,(r) = Y~ I~,(r)l 2, 
i = l  

clearly the probability density is also reciprocal; 

PB(rA)---- PA(rB).  

Reciproci ty  under  g lobal  T or C T  t rans format ions  

This section gives the proofs for the Klein- 
Gordon case (and thus by implication the Dirac and 
Schr6dinger cases) when the change of the source 
location to point B is also accompanied by a global 
transformation T or CT on all the fields and charges. 
Note that these transformations are generally not 
experimentally realizable except in certain trivial 
cases (e.g. B -- 0). 
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From Table 1 it is clear that the product eA reverses 
sign under global T or CT transformations, and the 
product e~p remains constant, so (8) with the source 
shifted to point B and eA-->-eA becomes 

[( E - eq~) 2 - ( - i V  + eA) 2 - / x  2] ~s ( r )  

= 6 ( r - r ~ ) .  (14) 

Note that this is not a formal time-reversal operation 
involving a complex conjugation; (14) is simply the 
answer to the question 'what equation describes the 
evolution of a particle ~B(r) of energy E, charge +e, 
with a source at point B and the field eA reversed in 
direction whilst the electrostatic interaction is 
unchanged ?' Since time reversal interchanges the pro- 
cesses of emission and absorption, this effect is incor- 
porated by interchanging the spatial locations of the 
source and detector. Repeating the usual derivation 
using (8) and (14) then yields 

~bB(rA)--~bA(rB)=--2ie~V'(Aal tAalZB)d3r .  (15) 

Any realistic potential can be written as 

A : Aphy s -~- V ~, 

where Aphy s is a physical potential of form 

Aphys(t) ~ ~ [j(r')/ir- r'l] 0 3 r 

and ~: is any arbitrary gauge variable, j(r') is nonzero 
only in the region 12, so Aphys ( r )~  r -1 at large dis- 
tances, as do the wave functions ~A(r) and ~po(r) as 
a consequence of having a point source. Hence the 
integral 

V "  (Aphysl]/A~B) d 3 r =  ~ Aphys~/B~ A • d S  
oS 

lim (4zrR2/R])=O. 
Rs~OO 

Under the usual gauge transform {with O~(r) '= 
~/,a(r) exp [+iex(r)] depending of course on whether 
charge conjugation has been employed}, (15) 
becomes 

~bo(ra) exp [iex(ra)] - ~bA(r~) exp [ +iex(r~)] 

= -2ie ~ V.  [(A + V x ) ~ f f ~  ] d 3r 

and if we choose X - - - s  c, then the right-hand side 
behaves exactly like the integral in (16), which is 
identically zero, so once again we have I~B(ra)[= 
I~A(rB)[ as a gauge-independent result. 

3. Results and discussion 

The main conclusion reached from the above deri- 
vation is that global time reversal (GTR) lies behind 

the symmetry we call reciprocity in electron diffrac- 
tion. These investigations have also highlighted the 
main conceptual difficulty that has prevented a ready 
acceptance of this fact in the past, that is, that working 
within the formalism of stationary states as required 
for the calculation of coherently scattered electron 
intensities precludes the use of 'initial' and 'final' 
states needed in TR proofs. The problem here, like 
that formulated in the Aharanov-Bohm effect, arises 
from particle-wave duality: the N-beam diffraction 
is envisaged (and computed as in multislice methods) 
as a monochromatic and classical wave equation. 
Finally, however, the interpretation requires a source 
and detector for each diffraction channel involving 
electrons as particles. 

A not unexpected consequence of the requirement 
of GTR is that reciprocity will not hold for a magnetic 
specimen, since reversal of the internal currents and 
hence magnetic field are part of that requirement. 

Finally, the present proof is not dependent on 
assumption of 'small-angle' scattering and so is 
equally applicable to LEED (low-energy electron 
diffraction). For this reason it should replace earlier 
use of the small-angle approximation, which initially 
appeared to provide a simple picture of reciprocity 
as a z-reversal symmetry. However, when it was later 
found (Portier & Gratias, 1982) that this picture was 
valid only for the exact Bragg condition, the sim- 
plification became counter-productive, even as a 
teaching aid. 

The authors wish to acknowledge generous assis- 
tance given by Dr Andrew Pogany in clearing up 
some points in the final manuscript. This project is 
supported by Australian Research Council Grant no. 
SG6900165. 
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